A SIMPLE SYNTHESIS OF (1R and 1s)-[1- 2 H₁]-1,5-ANHYDRO-D-GLUCITOL AND [1- 2 H₂]-1,5-ANHYDRO-D-GLUCITOL

Masuo FUNABASHI* and Shigetake YOSHIOKA†

Chemistry Department, College of Arts and Sciences,

Chiba University, Yayoichō, Chiba 260

† Department of Pediatrics, National Defense Medical College,

Namiki, Tokorozawa, Saitama 359

As a basic study of metabolism of 1,5-anhydro-D-glucitol, which has recently been identified in both human cerebrospinal fluid and plasma, the title compounds were conveniently synthesized as preliminary targets not only for multideuteration but for tritium labelling.

1,5-Anhydro-D-glucitol $\underline{1}$ (poligalitol), which had been known as a component of some plants, 1) has recently been recognized in human cerebrospinal fluid 2) from diabetic and uremic patients as well as in human plasma 3) from healthy persons of various ages. In a very recent paper, 4) Yoshioka and his coworkers suggested that this minor sugar might be a candidate of metabolic indexes for insulin-dependent diabetes mellitus.

These facts, therefore, drove us to prepare both cold and hot labelled derivatives of 1 for the purpose of clarifing the unknown metabolism of this sugar.

In the present communication, we wish to describe simple and versatile, monoand dideuteration at C-1 of $\underline{1}$ as a preliminary synthesis not only for multideuteration but for tritium introduction into 1.

 $(1s)-[1-^2H_1]-1$,5-Anhydro-D-glucitol $\underline{3a}$ was first of all prepared as follows (Scheme 1): 2,3,4,6-tetra-o-acetyl- α -D-glucopyranosyl bromide $\underline{2}$ was reduced with excess amount of lithium aluminum deuteride (LAD) in dry ether to yield $\underline{3a}$ [mp 143-144 °C, $[\alpha]_D^{13}$ +39.0° (c 1.0, H_2 0)] stereospecifically in a good yield. The stereochemistry of $\underline{3a}$ was unambiguously demonstrated from the analysis of 1H -NMR of the corresponding tetraacetate $\underline{3b}$ [syrup, $[\alpha]_D^{13}$ +38.8° (c 1.0, CHCl $_3$)]: H_1 equatorial

proton at 4.15 ppm disappeared and a doublet of H_1 axial proton ($J_{1,2}$ =10.9 Hz) at 3.30 ppm was observed.

Interestingly, in the case of reduction of $\underline{2}$ with equimolar amount of tributyltin deuteride in refluxing benzene, retention of stereochemistry at C-1 was predominantly confirmed and the ratio of IR and IS derivatives was estimated to be ca. 5 : 1 from the integral curve of the NMR.

On the other hand, we tried an alternative route to get 1s derivative 3a in order to economize mainly LAD: 2,3,4,6-tetra-o-benzyl- α -D-glucopyranosyl chloride⁵⁾ 5 was reduced with equimolar amount of LAD in a similar manner described as above to give (1s)- $[1-^2H_1]$ -2,3,4,6-tetra-o-benzyl-1,5-anhydro-D-glucitol 6 [syrup, $[\alpha]_D^9$ +7.2° (c 0.87, CHCl $_3$)] in a 64% yield. Hydrogenolysis of 6 in the presence of Pd/C (10%) was effected in acetic acid to give 3a in 84% yield. As for the total yields of 3a from D-glucose, however, the former method was rather better than the latter one requiring longer steps.

HOCH₂
HOCH₂

$$AcOCH_2$$
 $AcOCH_2$
 $AcOCH_2$

The stereospecific synthesis of IR derivative $\underline{10a}$ was also achieved via different processes shown in the scheme 2: 2,3,4,6-tetra-o-benzyl-D-glucono-1,5-lactone⁶) $\underline{7a}$ was firstly treated with LAD (10-13 molar amount) in the presence of large amount of borontrifluoride etherate (60 molar amount) in dry ether in an icebath to give the corresponding $[1^2H]-2,3,4,6$ -tetra-o-benzyl- α -D-glucopyranose $\underline{8}$ [mp 151-152 °C, $[\alpha]_D^{12}$ +14.0° (c 1.0, CHCl₃)]⁷) in 90% yield. The compound $\underline{8}$ was then chlorinated with methanesulfonyl chloride in 2,4,6-collidine⁵) to yield

 $[1-^2\mathrm{H}]-2,3,4,6$ -tetra-o-benzyl- α -D-glucopyranosyl chloride $\underline{9}$ which was then promptly treated without purification with lithium aluminum hydride in dry ether to give , stereospecifically the inversion product, $(1R)-[1-^2\mathrm{H_1}]-2,3,4,6$ -tetra-o-benzyl-1,5-anhydro-D-glucitol $\underline{10a}$ [syrup, $[\alpha]_D^{14}$ +7.5° (c 0.42, CHCl₃)] in a yield of 58% from $\underline{8}$. The stereochemistry at C-1 was similarly demonstrated from the analysis of $^1\mathrm{H-NMR}$ of the corresponding tetraacetate 8) $\underline{10c}$ [syrup, $[\alpha]_D^9$ +40.7° (c 0.87, CHCl₃)] obtained from $\underline{10a}$ by successive hydrogenation and acetylation processes: $\mathrm{H_1}$ axial proton at 3.30 ppm completely disappeared and a doublet of $\mathrm{H_1}$ equatorial proton at 4.15 ppm (J_{1.2} = 5.6 Hz) was observed.

As for $1^{-2}H_2$ derivative of $\underline{1}$, a similar reduction of $\underline{9}$ with LAD was conducted in dry ether to yield the corresponding $[1^{-2}H_2]-2,3,4,6$ -tetra-o-benzyl-1,5-anhydro-D-glucitol $\underline{11a}$ [syrup, $[\alpha]_D^{1.5}+7.0^\circ$ (c 0.5, CHCl $_3$)] in a 63% yield. Conventional hydrogenation of $\underline{11a}$ in the presence of Pd/C (10%) in acetic acid, followed by acetylation with acetic anhydride in pyridine gave tetraacetate $\underline{11c}$ [syrup, $[\alpha]_D^9+38.5^\circ$ (c 0.72, CHCl $_3$) in 72% yield from $\underline{11a}$. Double deuteration at C-1 of $\underline{1}$ was clearly confirmed by the 1H -NMR spectrum of $\underline{11c}$, in which both H_1 axial proton at 3.30 ppm and H_1 equatorial proton at 4.15 ppm completely disappeared. ^{13}C -NMR spectrum of $\underline{11c}$ also showed the absence of C-1 signal at 66.86 ppm, supporting the result of 1H -NMR. An alternative route to the compound $\underline{11b}^9$) was also successfully effected in the same procedure as was described in the first synthesis of $\underline{3a}$, via $[1^{-2}H]-1,2,3,4,6$ -penta-o-acetyl- β -D-glucopyranose $\underline{12}^{10}$) obtained in two conventional steps (hydrogenation and acetylation) from $\underline{8}$. The total yields of both

routes were comparable with each other.

References

- R. Chodat, Arch. Sci. Phys. et Nat., <u>18</u>, 228 (1887), <u>19</u>, 290 (1888), <u>20</u>, 599 (1888); P. Picard, Bull. Soc. Chim. Biol., <u>9</u>, 692 (1927); J. Shinoda,
 S. Sato, and D. Sato, Chem. Ber., <u>65</u>, 1219 (1927).
- 2) E. Pitkanen, Clin. Chim. Acta., 48, 159 (1973).
- 3) S. Yoshioka, S. Saitoh, T. Fujisawa, A. Fujimori, O. Takatani, and M. Funabashi, Clin. Chem., 28, 1283 (1982).
- 4) S. Yoshioka, S. Saitoh, C. Negishi, T. Fujisawa, A. Fujimori, O. Takatani, and M. Funabashi, Clin. Chem., 29, 1396 (1983).
- 5) J. Leroux and A. S. Perlin, Carbohyd. Res., 67, 163 (1978)
- 6) H. Kuzuhara and H. G. Fletcher, Jr., J. Org. Chem., 32, 2531 (1967)
- 7) The $^1\text{H-NMR}$ spectrum of the monoacetate obtained by acetylation of 8 with acetic anhydride and pyridine indicated disappearence of both axial and equatorial $^1\text{H}_1$ protons at 5.60 and 6.35 ppm. The both signals were observed in the corresponding light compound, namely, 1-o-acetyl-2,3,4,6-tetra-o-benzyl- α , β -D-glucopyranose.
- 8) Deacetylation of <u>10c</u> with sodium methoxide in methanol or hydrogenolysis of <u>10a</u> with Pd/C (10%) in acetic acid gave $(IR)-[1-^2H_1]-1$,5-anhydro-D-glucitol <u>10b</u> in a good yield; mp 143-144 °C, $[\alpha]_D^9$ +43.2° (c 1.0, H_2O).
- 9) Mp 144 °C , $[\alpha]_D^{12}$ +40.5° (c 1.0, H_2^0).
- 10) The compound $\underline{12}$ [mp 131-132 °C, $[\alpha]_D^{14}$ +3.8° (c 1.0, H_2^{0})] could be independently prepared in a yield of 38% by reducing D-glucono-1,5-lactone $\underline{7b}$ with NaBD₄ in a range of pH 5-6 and by acetylating the resulting free sugar with acetic anhydride and sodium acetate. The details will be described elsewhere.

(Received February 7, 1984)